

School of Computer Science and

Enginnering

COMP 9900

Information Technology Project
2018, s2

Project Name: ?

Team Name: H2CG

Team Member:
 Zhu CAO, z5099326
 Yuemian GE, z5111647
 Jiahao FENG, z5118650
 Harvey Tan, z5147986

1

Introduction
Existing system
Airbnb and Booking.com, have been widely promoted with the development of such in the
tourism industry, becoming well-known third-party business website platform in the recent
years. Both of them provide a scalable and maintainable platform for hosts submitting
available accommodations. These accommodations are normally used to obtain charge from
tourists who book rooms for travelling. Fees from booking normally not only belongs to hosts
who provide rooms, but also offer a part of payment to website for web pages modification
and maintaining as well as database stability. As these websites are prevailing and
convenient, people prefer to search accommodation information online rather than scheduling
a consultation with any intermediary institutions.
Problems of Existing system
For Booking.com, it only focus on the resource of hotels and motels, has hardly any resource
of apartments and houses. this situation sometimes leads to difficulty on booking of desolate
places such as a remote town.
For Airbnb, opposite to Booking.com, almost all the resource in this websites are private
accommodations, less hotels or motels making this website similar to a short-term rental
system.
Above analysis shows a common problem in both Booking.com and Airbnb system:
insufficient resource.
Furthermore, the biggest risk for hosts in Airbnb is that their property will get damaged.
While most transactions occur without incident, ​there are stories of entire houses being
trashed​ by dozens of party-goers when the Airbnb hosts thought they were renting to a quiet
suburban family, or an instance when a host came home to find his property had been
damaged, items had been stolen and the place was littered with meth pipes.
Solution
According to the problems of existing system, diversified type of accomodations can be
submitted to H2CG.
In addition, the host will be notified with the habits and preferences of the person booking the
rooms in the host’s accommodation. So the host can take the necessary precautions.
Differences
H2CG is catered for people who wants to book single room, shared accommodation. H2CG
search provides the cheapest available accommodation by default. Moreover, H2CG accepts
source from both private accommodations and public residences. Tourists could book a hotel
room for only several nights as well as rent a house for a long-term holiday. As for shared
accommodation, customer can see the habits and expectations of tenants, so they have a
rough idea of their accommodation mates.

2

Structure of Report

1. Background 3

2. Account Component 4

3. Host Component 6

4. Search Component 8

5. Book Component 9

6. Review/ Rating component 10

7. Conclusion 11

8. Appendix 12

Background
1. Usage scenario

1) Users of this system:
The users of H2CG are mainly divided into two parts: hosts and customers.

 Hosts: The owners of private accommodations such as apartments and houses.
 And also the owners of public residences such as hotels and motels.

Customers: mainly are tourists. People travelling to a place for business
 purpose or for a holiday as well as visiting relatives and friends.

 2) Processing users requests:
 For hosts, after submitting materials and photos about accommodations and
 details of rooms. These informations will stored in database of this system.
 For customers, after registering personal informations, customers can search
 available rooms based on searching conditions. After select satisfying rooms,
 customers could submit habits and comments. All of these information,
 including room booking and habits as well as comments, will be also stored in
 database. The database will update automatically and the modified information
 will shown in the booking list of the web page as well as the advertise page of
 the website.

3

System Architecture

Model-view-controller (MVC) is a modern architectural pattern that divides the project into
three interconnected parts. The MVC allows for efficient code reuse and parallel
development. This design pattern has lots of benefits once used in a group project. The main
components are DAO, DTO, Service, Mapper, Controller, View and Database.

4

Account Component
1. Register

Required inputs are Username, Password, Email and Gender. Upon receiving inputs, it will
INSERT into the database. If INSERT is successful, the system returns a success alert.
Success case example: -

2. Login

Required inputs are Username and password. Upon receiving inputs, it will check credentials.
If credentials exist and password matches, the system redirects to the home page.
Success case example: -

5

Click here to review the source code

Host Component
1. Add Advertisement

Required inputs are Title, Description, Address, Bathroom, Type of Property and Photos.
Upon receiving input in the Address field, the system integrated google map api to
autocomplete the address. This ensures the address is valid. If all the fields are filled, upon
clicking the “save and add room” button, the system will redirect to add room page after
successfully INSERT into the database.

6

2. Add Room(s)

Required inputs are Room Name, Room Description, Rental, Capacity and Photos.
Upon receiving inputs, the system will allow users to add more room when the “Add Room
Detail” button is clicked.

The submit button will redirect to the user’s personal Advertisement management page.

7

Click here to review the source code

Search Component

The required inputs are Check In Date, Check Out Date, number of Adults and number of
rooms. The optional inputs are destination (Suburb only) and Type of Property. Upon
receiving required inputs, the system will return all the results which satisfy the user request,
the system SELECT the data from the database (advertisement which has the lowest rental
rate by default).

Upon clicking the advertisement, the system will redirect to the advertisement that was
clicked.

8

Click here to review the source code

Book Component
Upon clicking the “BOOK NOW” button, the optional inputs are Habits and Expectation.

Upon clicking “BOOK” button, the system INSERT into the database.

9

After clicking ok, the page will refresh and the system will SELECT based on the
advertisement id, then booking details is displayed.

Click here to review the source code

Review/ Rating component
Upon clicking “MY BOOKING”, the system will display 2 section, “My Future Booking”
and “My Past Booking”. The system SELECT the relevant data from the database.

Upon clicking “Review” at your past bookings under the section of Operation, user is able to
leave feedback on the user’s experience living in the accommodation.

10

Upon confirming the review, a success alert will pop up.

To check if the review is successfully INSERTed, user can click on “Detail” under Operation
to view the advertisement.

Click here to review the source code

11

Conclusion
Tackle problems mentioned in component:
One of the problems dealt with during the whole project development is UI design. UI design
is the most easy component but also a time-consuming part of the project. UI design cannot
be finished at the beginning, because of every time a new function developed, the UI design
need to be updated in order to show this new function. In addition, the format of the html is
hard to adjust, the layout adjustment including color and shape of patterns costs an immense
amount of time since there are a range of conditions need to be considered in design, for
example the interests of customers, which styles of website customers prefer.

Another problem dealt with during the whole project development as well is database
completion. there are two matters in database completion. One is the collection of data, this
system is not used to usage in the reality, it is more likely an accomplish of an idea.
Therefore, the datas in the database are not the actual informations, establish a unrealistic
information in the database always cause problems. For example, when searching pictures on
the internet, copyright of the pictures need to be considered carefully. To fix this problem,
filter is essential, pictures with copyright have to be filtered out. Another matter is the Key
Field of the database. The Key Field of the database need to be considered seriously, the
incorrect of database design may cause serious problem. Key Field decide the tables, further
decide the whole database. At the beginning, a wrong Key Field cause a incorrect selection of
information, which cause a lot of time on debug the program. After figure out the problem in
database, we check each Key in each table carefully, finally prevent the further mistake
caused by Key.

Improvements

1. Integrating other databases to provide users to get the cheapest deal in
accommodation

2. Integrating google route api to show the distance between scenic view, places with the
accommodation.

3. Personalised recommendations for users. It will be based on factors that includes them
filling up additional questions which are optional mainly focused on the style of
accommodations that they fancy and also based on past bookings.

4. Recommendations of places around the accommodation. ​Displays personalised
recommendations based on the time of day, displaying breakfast/ brunch places in the
morning/afternoon, dinner places in the evening etc.

12

Appendix
Used Techniques

1. IDE: ​Eclipse
2. Diary management: ​BitBucket
3. Scrum:​ Trello
4. Programming language:​ Java 1.7, HTML, CSS
5. Framework structure: ​Spring, MyBatis
6. Database: ​MySQL

Installation manual
1. Install eclipse
2. Install tomcat
https://www.programmergate.com/step-by-step-guide-for-installing-tomcat-on-windows/
3. Install maven
http://www.vogella.com/tutorials/EclipseMaven/article.html#copyright-and-license
4. Import exist maven project
Once all of above have been installed successfully, click file->Import->Existing Maven
Project to import our project.

Source Code Structure

1. Account Component

1) The frontend design
userLoginView.jsp
userRegister.jsp
These two jsp files are designed to display the login page and register page.
The Backend design

function addUser()

This javascript function is used to add a new user. If success, it will redirect to the
userLoginView page.

2) The backend design
UserController.java_​userLogin
public String userLogin(@ModelAttribute UsersDTO userDto,

Model model, HttpSession session, @RequestParam(value =

"backUrl", required = false) String url)

13

https://www.programmergate.com/step-by-step-guide-for-installing-tomcat-on-windows/
http://www.vogella.com/tutorials/EclipseMaven/article.html#copyright-and-license

This function first check whether the current session is available. If there exists a
user, it redirects to search page. Otherwise it redirects to the login page.

UserService.java_​loginCheck
UserDAO.java​_selectByNameAndPassword
public UsersDTO loginCheck(UsersDTO UsersDTO);

UsersDTO selectByNameAndPassword(@Param("userName")String

userName, @Param("pwd")String pwd);

The first function receives values from ​selectByNameAndPassword ​ in
userDAO.java ​ and return this value.

UserMapper.xml
<select id="selectByNameAndPassword"

resultMap="BaseResultMap" parameterType="String">
This is a simple SQL. It chooses all values from table USERS according to
user_name and password. Then it returns value to ​selectByNameAndPassword ​ in
userDAO.java.

2. Host Component

1) The frontend design
hostAdv.jsp
<input type= ​"file"​ class= ​"form-control"​ id= ​"photo"
name= ​"photo"​ placeholder= ​"Please upload the photos"
onchange= ​"uploadImage()"​/>
<a href= ​"javascript:validateAndCommit()"​ class= ​"btn
btn-default"​>Save and Add Room
This jsp file is used to display the page of hosting part, including title, description,
address, selecting bathroom and update photos.

function uploadImage()

This javascript function is used to upload images. If it’s not a “jpg” or “png” type, it will
alert a warning.

function validateAndCommit()

This javascript function can make sure that all details are entered correctly. Then it
posts the userId and address to ​isAddrExist ​ function in ​AdvController.java ​.

function addPost()

If it cannot find a photo, it posts values to ​hostAdvertisment ​ function in
AdvController.java ​. Otherwise it posts values to
hostAdvertismentWithPhoto ​ function in ​AdvController.java ​.

function initAutocomplete()

function fillInAddress()

function geolocate()

14

The first function is to create the autocomplete object, restricting the search to
geographical location types. The second one is to get the place details from the
autocomplete object. The third function is used to bias the autocomplete object to the
user's geographical location, as supplied by the browser's 'navigator.geolocation'
object.

2) The backend design
AdvController.java_​isAddrExist
public Map<String, Object>

isAddrExist(@ModelAttribute("advDto") AdvertiseDTO advDto)

This function gets values from ​advService.checkAddrExist ​ and if it checks that
the address exists, the result is “yes” and it uses ​setTitleJson ​ to set correspond
values. Finally, the json object is called by javascript in ​hostAdv.jsp ​.

AdvController.java_​hostAdvertisment
AdvController.java_​hostAdvertismentWithPhoto
public Map<String, Object> postAdvertisment

public Map<String, Object> hostAdvertismentWithPhoto

These two functions are similar. First they check whether a user have logged in.
Then both of them get values from ​advService.addAdv ​, if it exists then it uses
setTitleJson ​ to set correspond values. Finally, the json object is called by
javascript in ​hostAdv.jsp ​. The only difference is that the second function will save
photos before the function ​setTitleJson ​.

AdvService.java
public AdvertiseDTO checkAddrExist

public int addAdv

It returns the value of function ​insertSelective ​ in ​advertiseDao ​.
It returns the values of function ​selectByAddr ​ in ​advertiseDao ​.

AdvMapper.xml
<insert id= ​"insertSelective"
parameterType= ​"com.h2cg.accommodation.dto.AdvertiseDTO"
keyProperty= ​"id"​ useGeneratedKeys= ​"true"​ >
This SQL insert all values into the ​ADVERTISE ​ table.

<select id= ​"selectByAddr"​ resultMap= ​"BaseResultMap"
parameterType= ​"com.h2cg.accommodation.dto.AdvertiseDTO"​>
This SQL chooses all details from the ​ADVERTISE ​ table and returns the result to the
checkAddrExist ​ in ​AdvService.java ​.

3. Search Component

1) The frontend design
index.jsp

15

This jsp file is used to display the page of searching part, including destination, check
in time, check out time, the property type and so on.

function validateAndCommit()

function searchAdv()

function scrollToLocation()

The first function is used to check whether all details are validated. If it is validated, it
will call ​searchAdv ​ function. In ​searchAdv ​ function, it gets values from the
searchAdv ​ function in ​AdvController.java ​ then displays the result at the
bottom of the same page. The third function is scrolling down to the location of last
“div” in the class “son-panel”.

2) The backend design
AdvController.java_​searchAdv
public Map<String, Object> searchAdv(HttpServletRequest

request, @ModelAttribute("bookDto") BookDTO bookDto, Model

model)

This function gets result from ​selectAdv ​ in ​advService.java ​. If the result is not
null, then it uses ​setListJson ​ to set correspond values and returns the jason to
index.jsp ​.

AdvService.java_​selectAdv
public List<AdvertiseDTO> selectAdv(BookDTO

bookDto,HttpServletRequest request)

It returns the value of function ​selectAdv ​ in ​advertiseDao ​.

AdvMapper.xml_​selectAdv
<select id= ​"selectAdv"​ resultMap= ​"BaseResultMap"
parameterType= ​"com.h2cg.accommodation.dto.BookDTO"​>

This SQL choose all details from the table composed by Book, Room and
Advertise.Here we use ​LEFT ​ ​JOIN ​ because all possible choices should be based on
the table Advertise. And the ​stay_begin ​ or ​stay_end ​ should be in certain area.
The result will be sent back to ​selectAdv ​ in ​AdvDAO.java ​.

4. Book Component

1) The frontend design
advDetail.jsp
This jsp file realized the following functions. First, it displays the detailed information
of the accommodation of all possible rooms that you can order. Then it displays the
booking page. Following this part, this page displays the detailed information of the
room that you have ordered along with the comments and ratings.

function validateAndCommit()

function searchRoom()

16

function bookRoom(roomId)

The first function is designed to redirect to the ​toAdvDetail ​ function in
AdvController.java ​. The second function works as searching rooms according
to conditions entered by users. It receives values from function ​searchRoom ​ in
AdvController.java ​ and then displays the values in the table. The third function
is designed to book a room according to ​roomId ​ and it posts values to ​bookRoom
function in ​advController.java ​. If a user books a room successfully, it raises an
alert.

2) The backend design
AdvController.java_​toAdvDetail
public String toUserProfile(@ModelAttribute AdvertiseDTO

advDto, @ModelAttribute("bookDto") BookDTO bookDto,

@ModelAttribute RoomDTO roomDto, Model model,

HttpServletRequest request)

This function receives values from ​selectAdvById ​ in ​AdvService.java ​,
selectHousemate ​ in ​bookService.java ​ and ​selectByAdvId ​ in
reviewService.java ​. Finally it returns the values to the ​advDetail.jsp ​.

AdvController.java_​searchRoom
public Map<String, Object> searchRoom(HttpServletRequest

request, @ModelAttribute("bookDto") BookDTO bookDto, Model

model)

This function receives values from ​selectAvailableRoom ​ in
roomService.java ​. If the number of available rooms is null, the result is failure
and return to the json object. The jason object is called by javascript in
advDetail.jsp ​.

AdvController.java_​bookRoom
public Map<String, Object> bookRoom(@ModelAttribute BookDTO

bookDto, HttpSession session)

This function receives values from the function of ​insertBooking ​ in
bookService.java ​. If the value is bigger than 0, which means booking a room
successfully and use ​setTitleJson ​ to set values in ​advDetail.jsp ​. Finally it
returns the json object.

BookService.java
public List<BookDTO> selectHousemate(BookDTO bookDto)

It receives values from ​selectHousemate ​ in ​bookDao.java ​ and the function
selectHousemate ​ in ​bookDao.java ​ receives result from the SQL in
BookMapper.xml ​.

BookMapper.xml
<select id= ​"selectHousemate"​ resultMap= ​"BaseResultMap"
parameterType= ​"com.h2cg.accommodation.dto.BookDTO"​>

17

This SQL choose booking details from the table composed by Book, Room and
Advertise.Here we use ​LEFT ​ ​JOIN ​ because all possible choices should be based on
the table Book. And the booked ​stay_end ​ should be bigger than ​stayBegin ​, the
booked ​stay_begin ​ should be smaller than ​stayEnd ​.

RoomService.java
public List<RoomDTO> selectAvailableRoom(BookDTO

DTO,HttpServletRequest request)

It receives values from ​selectAvailableRoom ​ in ​RoomDao.java ​ and the
function ​selectAvailableRoom ​ receives result from the SQL in
RoomMapper.xml ​.

RoomMapper.xml
<select id= ​"selectAvailableRoom"​ resultMap= ​"BaseResultMap"
parameterType= ​"com.h2cg.accommodation.dto.BookDTO"​>
This SQL choose all details from the table composed by Book and Room table. Here
we use ​LEFT ​ ​JOIN ​ because all possible choices should be based on the table Book.
And the ​stay_begin ​ should be bigger than current data. All lists are ordered by
room_id. ​ The result will be sent to the roomList in ​selectAvailableRoom ​.

5. Review Component

1) The frontend design
bookingList.jsp
This part is used to create a table with several headings: Stay From, Stay to,
Advertisement, Room and so on. Then it displays the values in the object
bookingListBeforeCheckIn ​ using a ​c:forEach ​ loop. The value in
bookingListBeforeCheckIn ​ comes from the function ​toBookingManagement
in ​AdvController.java ​.

<td>Detail

Cancel</td
>

This part is to create two hyperlinks, the ​Detail ​ is redirected to the ​toAdvDetail
page with certain values and the ​Cancel ​ is redirected to the javascript function
cancelBooking ​.

function cancelBooking(id)

This javascript function works for canceling the order that the user hasn’t check in. It
first uses ​$.messager.confirm ​to raise a confirmation. Then it posts the current
booking.id to the function ​cancelBooking ​ in ​AdvController.java ​. If it deletes
the room successfully, it will raise an alert and refresh current page.

function rating(id)

18

This javascript function works for adding comment on the room already checked in. It

2) The backend design
AdvController.java_​toBookingManagement
public String toBookingManagement(@ModelAttribute

AdvertiseDTO advDto, Model model, HttpSession session)

This is the booking management function in controller layer. First it checks whether
the current session is available. If not, it turns to the login page. Then it receives the
DTO list from ​selectBookingBeforeCheckIn ​ in ​BookService.java ​ and uses
model.addAttribute ​ to post these data to the variable
${bookingListBeforeCheckIn} ​ mentioned before in ​bookingList.jsp.

AdvController.java_​cancelBooking
public Map<String, Object>

cancelBooking(@RequestParam(required = false) Integer id)

throws IOException

This function gets values from ​bookService.deleteBooking ​ and if it deletes a
line successfully, the result is greater than 0 and it uses ​setTitleJson ​ to set
correspond values. Finally, the json object is called by javascript in
booingList.jsp ​.

BookService.java_​selectBookingBeforeCheckIn
public List<BookDTO> selectBookingBeforeCheckIn(Integer

userId, Date today)

This function receives values from ​bookDao.selectBookingBeforeCheckIn
and uses ​DateUtils.getDateString ​ ​to transform the ​Timestamp ​ into ​String ​.
Then the result is called by the function ​toBookingManagement ​ in
AdvController.java ​.

BookDAO.java
List<BookDTO> selectBookingBeforeCheckIn

List<BookDTO> selectBookingAfterCheckIn

int deleteBooking(Integer id);

The ​BookDAO ​ defined three functions mentioned before and they are implemented in
BookMapper.xml ​.

BookMapper.xml
<select id= ​"selectBookingBeforeCheckIn"
resultMap= ​"BaseResultMap"
parameterType= ​"com.h2cg.accommodation.dto.BookDTO"​>
This SQL choose all details from the table composed by Book, Room and
Advertise.Here we use ​LEFT ​ ​JOIN ​ because all possible choices should be based on
the table Book. And the ​stay_begin ​ should be bigger than current data. All lists are
ordered by ​stay_begin ​.

19

References
https://en.wikipedia.org/wiki/Airbnb
https://en.wikipedia.org/wiki/Booking.com
https://www.booking.com
https://www.airbnb.com.au/
https://mvnrepository.com/artifact/org.springframework/spring-context
http://camel.apache.org/mybatis.html
https://www.w3schools.com/html/
https://www.w3schools.com/css/default.asp
https://www.w3schools.com/sql/sql_ref_mysql.asp
https://www.w3schools.com/js/
https://www.learnjavaonline.org/
https://www.websitebuilderexpert.com/how-to-build-a-website/
https://www.careeranna.com/articles/report-writing-format-sample-report/

20

https://en.wikipedia.org/wiki/Airbnb
https://en.wikipedia.org/wiki/Booking.com
https://www.booking.com/
https://www.airbnb.com.au/
https://mvnrepository.com/artifact/org.springframework/spring-context
http://camel.apache.org/mybatis.html
https://www.w3schools.com/html/
https://www.w3schools.com/css/default.asp
https://www.w3schools.com/sql/sql_ref_mysql.asp
https://www.w3schools.com/js/
https://www.learnjavaonline.org/
https://www.websitebuilderexpert.com/how-to-build-a-website/
https://www.careeranna.com/articles/report-writing-format-sample-report/

